A Threshold-Based Weather Model for Predicting Stripe Rust Infection in Winter Wheat

Author:

El Jarroudi Moussa1,Kouadio Louis2,Bock Clive H.3,El Jarroudi Mustapha4,Junk Jürgen5,Pasquali Matias6,Maraite Henri7,Delfosse Philippe5

Affiliation:

1. Department of Environmental Sciences and Management, Université de Liège, Arlon, B-6700 Belgium

2. International Centre for Applied Climate Sciences, University of Southern Queensland, Toowoomba, QLD 4350 Australia

3. United States Department of Agriculture-Agricultural Research Service SEFTNRL, Byron, GA 31008

4. Laboratory of Mathematics and Applications, Department of Mathematics, Université Abdelmalek Essaâdi, Tangier, Morocco

5. Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Belvaux, L-4422 Grand-Duché de Luxembourg

6. Department of Food, Environmental and Nutritional Sciences, University of Milano, Milan 20233, Italy

7. Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, 1348 Belgium

Abstract

Wheat stripe rust (caused by Puccinia striiformis f. sp. tritici) is a major threat in most wheat growing regions worldwide, which potentially causes substantial yield losses when environmental conditions are favorable. Data from 1999 to 2015 for three representative wheat-growing sites in Luxembourg were used to develop a threshold-based weather model for predicting wheat stripe rust. First, the range of favorable weather conditions using a Monte Carlo simulation method based on the Dennis model were characterized. Then, the optimum combined favorable weather variables (air temperature, relative humidity, and rainfall) during the most critical infection period (May-June) was identified and was used to develop the model. Uninterrupted hours with such favorable weather conditions over each dekad (i.e., 10-day period) during May-June were also considered when building the model. Results showed that a combination of relative humidity >92% and 4°C < temperature < 16°C for a minimum of 4 continuous hours, associated with rainfall ≤0.1 mm (with the dekad having these conditions for 5 to 20% of the time), were optimum to the development of a wheat stripe rust epidemic. The model accurately predicted infection events: probabilities of detection were ≥0.90 and false alarm ratios were ≤0.38 on average, and critical success indexes ranged from 0.63 to 1. The method is potentially applicable to studies of other economically important fungal diseases of other crops or in different geographical locations. If weather forecasts are available, the threshold-based weather model can be integrated into an operational warning system to guide fungicide applications.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3