Carpogenic Germinability of Diverse Sclerotinia sclerotiorum Populations Within the Southwestern Australian Grain Belt

Author:

Michael Pippa J.1ORCID,Lui King Yin1,Thomson Linda L.1,Stefanova Katia2,Bennett Sarita J.1

Affiliation:

1. Centre for Crop and Disease Management, Curtin University, Bentley, WA 6845, Australia

2. SAGI-WEST, Curtin University, Bentley, WA 6845, Australia

Abstract

Sclerotinia stem rot, caused by the necrotrophic plant pathogen Sclerotinia sclerotiorum (Lib.) de Bary, is a major disease of canola and pulses in Australia. Current disease management relies greatly on cultural and chemical means of control. Timing of fungicide applications remains a challenge, because efficacy is dependent on accurate prediction of ascospore release and presence on the plant. The aims of this study were to determine the optimal temperature for carpogenic germination of S. sclerotiorum populations sampled from canola and lupin fields in southwestern Australia and characterize diversity using mycelial compatibility groupings (MCGs). Sclerotia were collected from four diseased canola and one diseased lupin field from across southwestern Australia. Forty sclerotia from each population were incubated at four alternating temperatures of 30/15, 20/15, 20/4, and 15/4°C (12-h/12-h light/dark cycle) and assessed every 2 to 3 days for a 180-day period. MCG groupings for populations were characterized using 12 reference isolates. Results indicated the time to initial carpogenic germination decreased as diurnal temperature fluctuations decreased, with a fluctuation of 5°C (20/15°C) having the most rapid initial germination followed by 11°C (15/4°C) followed by 16°C (20/4°C). Optimal germination temperature for all five populations was 20/15°C; however, population responses to other diurnal temperature regimes varied considerably. No germination was observed at 30/15°C. MCG results indicate extensive diversity within and between populations, with at least 40% of sclerotia within each population unable to be characterized. We suggest that this diversity has enabled S. sclerotiorum populations to adapt to varying environmental conditions within southwestern Australia.

Funder

Grains Research and Development Corporation

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3