Digital Imaging to Evaluate Root System Architectural Changes Associated with Soil Biotic Factors

Author:

Mattupalli Chakradhar12ORCID,Seethepalli Anand1ORCID,York Larry M.1ORCID,Young Carolyn A.1ORCID

Affiliation:

1. Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401

2. San Luis Valley Research Center, Colorado State University, 0249 East Road 9 North, Center, CO 81125

Abstract

Root system architecture is critical for plant growth, which is influenced by several edaphic, environmental, genetic, and biotic factors including beneficial and pathogenic microbes. Studying root system architecture and the dynamic changes that occur during a plant’s lifespan, especially for perennial crops growing over multiple growing seasons, is still a challenge because of the nature of their growing environment. We describe the utility of an imaging platform called RhizoVision Crown to study root system architecture of alfalfa, a perennial forage crop threatened by Phymatotrichopsis root rot (PRR) disease. Phymatotrichopsis omnivora is the causal agent of PRR disease that reduces alfalfa stand longevity. During the lifetime of the stand, PRR disease rings enlarge and the field can be categorized into three zones based upon plant status: asymptomatic, disease front and survivor. To study root system architectural changes associated with PRR, a 4-year-old 25.6-ha alfalfa stand infested with PRR was selected at the Red River Farm, Burneyville, OK during October 2017. Line transect sampling was conducted from four actively growing PRR disease rings. At each disease ring, six line transects were positioned spanning 15 m on either side of the disease front with one alfalfa root crown sampled at every 3 m interval. Each alfalfa root crown was imaged with the RhizoVision Crown platform using a backlight and a high-resolution monochrome CMOS camera enabling preservation of the natural root system integrity. The platform’s image analysis software, RhizoVision Analyzer, automatically segmented images, skeletonized, and extracted a suite of features. Data indicated that the survivor plants compensated for damage or loss to the taproot through the development of more lateral and crown roots, and that a suite of multivariate features could be used to automatically classify roots as from survivor or asymptomatic zones. Root growth is a dynamic process adapting to ever changing interactions among various phytobiome components. By utilizing the low-cost, efficient, and high-throughput RhizoVision Crown platform, we quantified these changes in a mature perennial forage crop.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science,Molecular Biology,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3