Mitochondrial Haplotype Analysis for Differentiation of Isolates of Phytophthora cinnamomi

Author:

Martin F. N.,Coffey M. D.

Abstract

Although Phytophthora cinnamomi is heterothallic, there are few instances of successful crossing in laboratory experiments, and analysis of field populations indicates a clonally reproducing population. In the absence of sexual recombination, the ability to monitor mitochondrial haplotypes may provide an additional tool for identification of clonal isolates and analysis of population structure. To determine mitochondrial haplotypes for this species, seven mitochondrial loci spanning a total of 6,961 bp were sequenced for 62 isolates representing a geographically diverse collection of isolates with A1 and A2 mating type. Three of the regions were primarily intergenic regions between trnG and rns, rns and nad3, and nad6 and cox1, while the remaining loci spanned cox2, nad9, rps10, and secY coding regions and some of the flanking spacer regions. In total, 45 mitochondrial haplotypes were identified (75% of the total isolates examined) with differences due to single-nucleotide polymorphisms (SNPs, totaling 152 bp) and length mutations (17 indels >2 bp representing a total of 910 bp in length). SNPs were the predominate mutation in the four coding regions and their flanking intergenic regions, while both SNPs and length mutations were observed in the three primarily intergenic regions. Some of the length mutations in these regions were due to addition or loss of unique sequences while others were due to variable numbers of subrepeats (in the trnG-rns region, there were 3 to 12 copies of a 24-bp subrepeat sequence that differentiated 17 haplotypes). Network analysis of the haplotypes identified eight primary clades, with the most divergent clade representing primarily A1 isolates collected from Papua New Guinea. The isolate grouping in the network corresponded to mating type and previously published isozyme classifications, with three exceptions: a haplotype representing an A1 mating type (H29) was placed well within the A2 mating type haplotype grouping, one haplotype (H26) had isolates with two isozyme classifications, and one isozyme group was represented on separate network clades, suggesting that recombination has occurred in the past. Among the 62 isolates examined, several examples were identified of isolates recovered from different geographic regions having the same mitochondrial haplotype, suggesting movement of isolates via plant material. Analysis of the data set to determine whether fewer loci could be sequenced to classify haplotypes indicated that the trnG-rns and rns-nad6 loci would classify 87% of the haplotypes identified in this study, while additional sequencing of the nad9 or secY loci would further differentiate the remaining six haplotypes. Based on conservation of gene order in Phytophthora spp., the trnG-rns locus should be useful for mitochondrial haplotype classification in other species, as should the cox2, nad9, rps10, and secY loci. However, the rns-nad3 and nad6-cox1 loci span regions that can have a different gene order in some Phytophthora spp.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3