Optimum Sample Size for Determining Disease Severity and Defoliation Associated with Septoria Leaf Spot of Blueberry

Author:

Ojiambo P. S.1,Scherm H.1

Affiliation:

1. Department of Plant Pathology, University of Georgia, Athens 30602

Abstract

In a 3-year field study, Premier rabbiteye blueberry plants were sampled at three hierarchical levels (leaf, shoot, and bush) to assess severity of Septoria leaf spot (caused by Septoria al-bopunctata) and incidence of defoliation. A positive linear relationship (R 2 = 0.977, P < 0.0001, n = 2127) was observed between the number of spots per leaf and percent necrotic leaf area, both assessed on individual leaves in mid- to late October. For data summarized at the shoot level, percent defoliation increased nonlinearly (R 2 = 0.729, P < 0.0001, n = 224) as disease severity increased, with a rapid rise to an upper limit showing little change in defoliation above 60 spots per leaf. Variance components were calculated for disease severity to partition total variation into variation among leaves per shoot, shoots per bush, and bushes within the field. In all cases, leaves per shoot and shoots per bush accounted for >90% of the total variation. Based on the variance components and linear cost functions (which considered the time required to assess each leaf and select new shoots and bushes for assessment), the optimum sample size for assessing disease severity as number of spots per leaf (with an allowable variation of 20% around the mean) was 75 leaves, one each selected from three shoots per bush on 25 bushes (total time required for assessment: 36.1 min). For disease severity expressed as percent necrotic leaf area, the corresponding values were 144 leaves, two each sampled from three shoots per bush on 24 bushes (total time required: 21.7 min). Thus, given the strong correlation between the two disease variables demonstrated in this study, visual assessment of percent necrotic area was the more efficient method. With an allowable variation of 10% around the mean, a sample of 27 shoots from nine bushes was the optimum sample size for assessing defoliation across the 3 years.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3