Affiliation:
1. Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
Abstract
Plants respond in a similar manner to aphid feeding as to pathogen attack. Diuraphis noxia is a specialist aphid, feeding only on selected grasses that include wheat, barley, and oats. The wheat–Diuraphis noxia interaction is characterized by responses very similar to those seen in wheat-pathogen interactions with none of the underlying resistance pathways and genes characterized yet. From wheat harboring the Dn1 resistance gene, we have identified a nucleotide-binding leucine-rich repeat (NLR) gene containing two integrated domains (IDs). These are three C-terminus ankyrin repeat domains and an N-terminus WRKY domain. The NLR core of the gene can be traced through speciation events within the grass family, with a recent WRKY domain integration that is Triticum-specific. Virus-induced gene silencing of the gene in a resistant wheat line resulted in the abolishment of the resistance response and induced a highly susceptible phenotype. Silenced plants supported a higher number of aphids, similar to the susceptible near-isogenic line (NIL), and the intrinsic rate of increase of the aphids matched that of aphids feeding on the susceptible NIL. The presence of the gene is necessary for Dn1 resistance and we have named the gene Associated with Dn resistance 1 (Adnr1) to reflect this function.
Funder
National Research Foundation
Winter Cereal Trust
Subject
Agronomy and Crop Science,General Medicine,Physiology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献