Factors Influencing the Efficacy of Myclobutanil and Azoxystrobin for Control of Grape Black Rot

Author:

Hoffman Lisa Emele1,Wilcox Wayne F.1

Affiliation:

1. Department of Plant Pathology, Cornell University, New York State Agricultural Experiment Station, Geneva 14456

Abstract

We studied several factors influencing the efficacy of the demethylation inhibitor (DMI) fungicide myclobutanil and the strobilurin fungicide azoxystrobin for control of grape black rot, caused by the pathogen Guignardia bidwellii (anamorph Phyllosticta ampelicida). The distribution of sensitivities to myclobutanil among G. bidwellii isolates from an “organic” vineyard (no previous exposure to synthetic fungicides, n = 50) and from a commercial vineyard with a history of DMI applications (n = 60) was determined in vitro. There was little difference between the two populations, and the range of sensitivities was narrow; for the composite population of 110 isolates, the value of the mean effective dose for 50% inhibition (ED50) was 0.04 mg/liter, and the most- and least-sensitive isolates were separated by a factor of 16. When applied from 2 to 6 days after inoculating grape seedlings with a suspension containing either 2 × 104 or 1 × 106 conidia per ml, myclobutanil (60 mg/liter) provided complete control of lesion development. When applied beyond 6 days after inoculation but prior to lesion appearance (9 to 11 days after inoculation, depending on temperature), it provided complete control of pycnidium production in those lesions that developed subsequently. In contrast, when applied 2 to 10 days after inoculation with 2 × 104 conidia per ml, azoxystrobin (128 mg/liter) provided only 78 to 63% control of lesion formation and erratic control of pycnidium formation, although conidium production was reduced by 85 to 68% across this range of treatments. Relatively little control was provided by azoxystrobin treatments following inoculation with 1 × 106 conidia per ml. On leaf disks treated with azoxystrobin at 20 mg/liter prior to inoculation, 8 to 43% of conidia from five G. bidwellii isolates germinated, and 4 to 19% formed appressoria. However, these processes were completely to near-completely inhibited when salicylhydroxamic acid (SHAM), which inhibits an alternative respiration pathway utilized to circumvent the activity of strobilurin fungicides, was added to the inoculum at 100 mg/liter. Thus, alternative respiration apparently allowed the conidia to germinate and form appressoria on azoxystrobin-treated leaves. When grape seedlings were sprayed with commercially formulated azoxystrobin at 200 mg/liter and inoculated the next day with G. bidwellii conidia, little or no disease was evident 4 weeks later. However, G. bidwellii pycnidia formed on up to 50% of the leaves from such plants when they were killed with paraquat 1 to 7 days after inoculation. These results suggest that latent infections became established on azoxystrobin-treated leaves and became active after the plants were killed with paraquat.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3