Affiliation:
1. Department of Plant Pathology, Cornell University, New York State Agricultural Experiment Station, Geneva 14456
Abstract
We studied several factors influencing the efficacy of the demethylation inhibitor (DMI) fungicide myclobutanil and the strobilurin fungicide azoxystrobin for control of grape black rot, caused by the pathogen Guignardia bidwellii (anamorph Phyllosticta ampelicida). The distribution of sensitivities to myclobutanil among G. bidwellii isolates from an “organic” vineyard (no previous exposure to synthetic fungicides, n = 50) and from a commercial vineyard with a history of DMI applications (n = 60) was determined in vitro. There was little difference between the two populations, and the range of sensitivities was narrow; for the composite population of 110 isolates, the value of the mean effective dose for 50% inhibition (ED50) was 0.04 mg/liter, and the most- and least-sensitive isolates were separated by a factor of 16. When applied from 2 to 6 days after inoculating grape seedlings with a suspension containing either 2 × 104 or 1 × 106 conidia per ml, myclobutanil (60 mg/liter) provided complete control of lesion development. When applied beyond 6 days after inoculation but prior to lesion appearance (9 to 11 days after inoculation, depending on temperature), it provided complete control of pycnidium production in those lesions that developed subsequently. In contrast, when applied 2 to 10 days after inoculation with 2 × 104 conidia per ml, azoxystrobin (128 mg/liter) provided only 78 to 63% control of lesion formation and erratic control of pycnidium formation, although conidium production was reduced by 85 to 68% across this range of treatments. Relatively little control was provided by azoxystrobin treatments following inoculation with 1 × 106 conidia per ml. On leaf disks treated with azoxystrobin at 20 mg/liter prior to inoculation, 8 to 43% of conidia from five G. bidwellii isolates germinated, and 4 to 19% formed appressoria. However, these processes were completely to near-completely inhibited when salicylhydroxamic acid (SHAM), which inhibits an alternative respiration pathway utilized to circumvent the activity of strobilurin fungicides, was added to the inoculum at 100 mg/liter. Thus, alternative respiration apparently allowed the conidia to germinate and form appressoria on azoxystrobin-treated leaves. When grape seedlings were sprayed with commercially formulated azoxystrobin at 200 mg/liter and inoculated the next day with G. bidwellii conidia, little or no disease was evident 4 weeks later. However, G. bidwellii pycnidia formed on up to 50% of the leaves from such plants when they were killed with paraquat 1 to 7 days after inoculation. These results suggest that latent infections became established on azoxystrobin-treated leaves and became active after the plants were killed with paraquat.
Subject
Plant Science,Agronomy and Crop Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献