A Step Towards Validation of High-Throughput Sequencing for the Identification of Plant Pathogenic Oomycetes

Author:

Espindola Andres S.1ORCID,Cardwell Kitty1,Martin Frank N.2,Hoyt Peter R.3,Marek Stephen M.1,Schneider William4,Garzon Carla D.15ORCID

Affiliation:

1. Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078

2. U.S. Department of Agriculture–Agriculture Research Service, Salinas, CA

3. Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078

4. F1/K9 LLC, Palm Coast, FL 32164

5. Department of Plant Science and Landscape Architecture, Delaware Valley University, Doylestown, PA 18901

Abstract

The advancement in high-throughput sequencing (HTS) technology allows the detection of pathogens without the need for isolation or template amplification. Plant regulatory agencies worldwide are adopting HTS as a prescreening tool for plant pathogens in imported plant germplasm. The technique is a multipronged process and, often, the bioinformatic analysis complicates detection. Previously, we developed E-probe diagnostic nucleic acid analysis (EDNA), a bioinformatic tool that detects pathogens in HTS data. EDNA uses custom databases of signature nucleic acid sequences (e-probes) to reduce computational effort and subjectivity when determining pathogen presence in a sample. E-probes of Pythium ultimum and Phytophthora ramorum were previously validated only using simulated HTS data. However, HTS samples generated from infected hosts or pure culture may vary in pathogen concentration, sequencing bias, and data quality, suggesting that each pathosystem requires further validation. Here, we used metagenomic and genomic HTS data generated from infected hosts and pure culture, respectively, to further validate and curate e-probes of Pythium ultimum and Phytophthora ramorum. E-probe length was found to be a determinant of diagnostic sensitivity and specificity; 80-nucleotide e-probes increased the diagnostic specificity to 100%. Curating e-probes to increase specificity affected diagnostic sensitivity only for 80-nucleotide Pythium ultimum e-probes. Comparing e-probes with alternative databases and bioinformatic tools in their speed and ability to find Pythium ultimum and Phytophthora ramorum demonstrated that, although pathogen sequence reads were detected by other methods, they were less specific and slower when compared with e-probes.

Funder

United States Department of Agriculture–National Institute of Food and Agriculture

National Science Foundation

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3