Mycovirus-Induced Hypervirulence of Leptosphaeria biglobosa Enhances Systemic Acquired Resistance to Leptosphaeria maculans in Brassica napus

Author:

Shah Unnati A.1,Kotta-Loizou Ioly12ORCID,Fitt Bruce D. L.1,Coutts Robert H. A.1

Affiliation:

1. Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, U.K.

2. Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, U.K.

Abstract

Phoma stem canker (blackleg) is one of the most important diseases of winter oilseed rape (Brassica napus) worldwide and is caused by a complex that comprises at least two species: Leptosphaeria maculans and L. biglobosa. Screening a panel of field Leptosphaeria isolates from B. napus for the presence of mycoviruses revealed the presence of a novel double-stranded RNA quadrivirus in L. biglobosa and no viruses in L. maculans. Following elimination of the mycovirus, virus-infected and virus-free isogenic lines of L. biglobosa were created. A direct comparison of the growth and virulence of these isogenic lines illustrated that virus infection caused hypervirulence and resulted in induced systemic resistance toward L. maculans in B. napus following lower leaf preinoculation with the virus-infected isolate. Analysis of the plant transcriptome suggests that the presence of the virus leads to subtle alterations in metabolism and plant defenses. For instance, transcripts involved in carbohydrate and amino acid metabolism are enriched in plants treated with the virus-infected isolate, while pathogenesis-related proteins, chitinases and WRKY transcription factors are differentially expressed. These results illustrate the potential for deliberate inoculation of plants with hypervirulent L. biglobosa to decrease the severity of Phoma stem canker later in the growing season. [Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .

Funder

Biotechnology and Biological Sciences Research Council

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3