Structure-Function Analysis of Immune Receptor AtRLP23 with Its Ligand nlp20 and Coreceptors AtSOBIR1 and AtBAK1

Author:

Albert Isabell1ORCID,Zhang Lisha1ORCID,Bemm Hannah1,Nürnberger Thorsten12ORCID

Affiliation:

1. Eberhard-Karls-University Tübingen, Center of Plant Molecular Biology, Auf der Morgenstelle 32, D-72076 Tübingen, Germany

2. Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa

Abstract

Pattern-triggered immunity is an inherent feature of the plant immune system. Recognition of either microbe-derived surface structures (patterns) or of plant materials released due to the deleterious impact of microbial infection is brought about by plasma membrane pattern recognition receptors (PRRs). PRRs composed of leucine-rich repeat (LRR) ectodomains are thought to mediate sensing of proteinaceous patterns and to initiate signaling cascades culminating in the activation of generic plant defenses. In contrast to LRR receptor kinases, LRR receptor proteins (LRR-RPs) lack a cytoplasmic kinase domain for initiation of downstream signal transduction. LRR-RPs form heteromeric constitutive, ligand-independent complexes with coreceptor SOBIR1. Upon ligand binding to LRR-RPs, recruitment of coreceptor SERK3/BAK1 results in formation of a ternary PRR complex. Structure-function analysis of LRR-RP-type PRRs is missing. AtRLP23 constitutes an LRR-RP PRR that mediates recognition of a peptide motif (nlp20) found in numerous bacterial, fungal, and oomycete necrosis and ethylene-inducing peptide 1-like proteins (NLPs). We here report the use of a series of AtRLP23 variants to decipher subdomains required for ligand binding and interaction with coreceptors AtSOBIR1 and AtBAK1, respectively. Deletion of LRR1 or LRR3 subdomains efficiently abrogated the ability of AtRLP23 receptor variants to confer nlp20 pattern sensitivity, to bind nlp20, and to recruit AtBAK1 into a ternary PRR complex. This suggests that the very N-terminal part of the AtRLP23 ectodomain is crucial for receptor function. Deletion of the intracellular 17-amino-acid tail of AtRLP23 reduced but did not abolish receptor function, suggesting an auxiliary role of this domain in receptor function. We further found that interaction of AtRLP23 and other LRR-RP-type PRRs with AtSOBIR1 does not require the AtRLP23 LRR ectodomain but is brought about by a GxxxG protein dimerization motif in the transmembrane domain and a stretch of negatively charged glutamic acid residues in the outer juxtamembrane domain of the receptor. Further, AtRLP23 levels were found to be unaltered in Atsobir1-1 mutant genotypes, suggesting that AtSOBIR1 does not act as a protein scaffold in stabilizing LRR-RP-type PRRs in Arabidopsis.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3