Evolutionary gain and loss of a plant pattern-recognition receptor for HAMP recognition

Author:

Snoeck Simon1ORCID,Abramson Bradley W2,Garcia Anthony GK1ORCID,Egan Ashley N3ORCID,Michael Todd P2,Steinbrenner Adam D1ORCID

Affiliation:

1. Department of Biology, University of Washington

2. The Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies

3. Department of Biology, Utah Valley University

Abstract

As a first step in innate immunity, pattern recognition receptors (PRRs) recognize the distinct pathogen and herbivore-associated molecular patterns and mediate activation of immune responses, but specific steps in the evolution of new PRR sensing functions are not well understood. We employed comparative genomic and functional analyses to define evolutionary events leading to the sensing of the herbivore-associated peptide inceptin (In11) by the PRR inceptin receptor (INR) in legume plant species. Existing and de novo genome assemblies revealed that the presence of a functional INR gene corresponded with ability to respond to In11 across ~53 million years (my) of evolution. In11 recognition is unique to the clade of Phaseoloid legumes, and only a single clade of INR homologs from Phaseoloids was functional in a heterologous model. The syntenic loci of several non-Phaseoloid outgroup species nonetheless contain non-functional INR-like homologs, suggesting that an ancestral gene insertion event and diversification preceded the evolution of a specific INR receptor function ~28 my ago. Chimeric and ancestrally reconstructed receptors indicated that 16 amino acid differences in the C1 leucine-rich repeat domain and C2 intervening motif mediate gain of In11 recognition. Thus, high PRR diversity was likely followed by a small number of mutations to expand innate immune recognition to a novel peptide elicitor. Analysis of INR evolution provides a model for functional diversification of other germline-encoded PRRs.

Funder

Belgian American Educational Foundation

Washington Research Foundation

University of Washington

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference96 articles.

1. An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity;Albert;Nature Plants,2015

2. Structure-function analysis of immune receptor AtRLP23 with its ligand nlp20 and coreceptors AtSOBIR1 and AtBAK1;Albert,2019

3. Surface sensor systems in plant immunity;Albert;Plant Physiology,2020

4. FastML: a web server for probabilistic reconstruction of ancestral sequences;Ashkenazy;Nucleic Acids Research,2012

5. Two NLR immune receptors acquired high-affinity binding to a fungal effector through convergent evolution of their integrated domain;Białas;eLife,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3