Characterization of VdASP F2 Secretory Factor from Verticillium dahliae by a Fast and Easy Gene Knockout System

Author:

Xie Chengjian12,Li Qiaoling3,Yang Xingyong12

Affiliation:

1. School of Life Sciences and;

2. The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China; and

3. Chongqing Institute of Medicinal Plant Cultivation, Chongqing 408435, China

Abstract

The vascular wilt fungus Verticillium dahliae produces persistent resting structures known as microsclerotia, which enable long-term survival of this plant pathogen in soil. The completed genome sequence of V. dahliae has facilitated large-scale investigations of individual gene functions using gene-disruption strategies based on Agrobacterium tumefaciens-mediated transformation. However, the construction of gene-deletion vectors and screening of deletion mutants have remained challenging in V. dahliae. In this study, we developed a fast and easy gene knockout system for V. dahliae using ligation-independent cloning and fluorescent screening. We identified secretory factor VdASP F2 in a T-DNA insertion library of V. dahliae and deleted the VdASP F2 gene using the developed knockout system. Phenotypic analysis suggests that VdASP F2 is not necessary for V. dahliae growth on potato dextrose agar under various stress conditions. However, on semisynthetic medium or under limited nutrient conditions at lower temperatures, the VdASP F2 deletion mutant exhibited vigorous mycelium growth, less branching, and a significant delay in melanized microsclerotial formation. Further assessment revealed that VdASP F2 was required for the expression of VDH1 and VMK1, two genes involved in microsclerotial formation. Cotton inoculated with the VdASP F2 deletion mutant wilted, demonstrating that VdASP F2 is not associated with pathogenicity under normal conditions. However, after inducing microsclerotial formation and incubation at low temperatures, cotton infected with the VdASP F2 deletion mutant did not exhibit wilt symptoms. In conclusion, our results show that VdASP F2 plays an important role in the response of V. dahliae to adverse environmental conditions and is involved in a transition to a dormant form for prolonged survival.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3