Tree Effects on Coffee Leaf Rust at Field and Landscape Scales

Author:

Avelino Jacques12ORCID,Gagliardi Stephanie3ORCID,Perfecto Ivette4,Isaac Marney E.3,Liebig Theresa5,Vandermeer John6,Merle Isabelle7,Hajian-Forooshani Zachary6,Motisi Natacha28ORCID

Affiliation:

1. CIRAD, UMR PHIM, F-34398 Montpellier, France

2. PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France

3. University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada

4. School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, U.S.A.

5. Alliance of Bioversity International and CIAT, CGIAR FOCUS Climate Security, 00054 Rome, Italy

6. Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, U.S.A.

7. Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France

8. CIRAD, UMR PHIM, 00100 Nairobi, Kenya

Abstract

Although integrating trees into agricultural systems (i.e., agroforestry systems) provides many valuable ecosystem services, the trees can also interact with plant diseases. We demonstrate that a detailed understanding of how plant diseases interact with trees in agroforestry systems is necessary to identify key tree canopy characteristics, leaf traits, spatial arrangements, and management options that can help control plant diseases at different spatial scales. We focus our analysis on how trees affect coffee leaf rust, a major disease affecting one of the world’s most significant crop commodities. We show that trees can both promote and discourage the development of coffee leaf rust at the plot scale via microclimate modifications in the understory. Based on our understanding of the role of tree characteristics in shaping the microclimate, we identify several canopy characteristics and leaf traits that can help manage coffee leaf rust at the plot scale: namely, thin canopies with high openness, short base height, horizontal branching, and small, dentate leaves. In contrast, at the edge of coffee farms, having large trees with high canopy volume and small, thick, waxy leaves is more useful to reduce throughflow wind speeds and intercept the airborne dispersal of urediniospores, an important consideration to control disease at the landscape scale. Seasonal pruning can help shape trees into the desired form, and trees can be spatially arranged to optimize desired effects. This case study demonstrates the added value of combining process-based epidemiology studies with functional trait ecology to improve disease management in agroforestry systems.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3