Quantitative Trait Loci for Slow-Rusting Resistance to Leaf Rust in Doubled-Haploid Wheat Population CI13227 × Lakin

Author:

Lu Yue1,Bowden Robert L.1,Zhang Guorong1,Xu Xiangyang1,Fritz Allan K.1,Bai Guihua1

Affiliation:

1. First and fifth authors: Department of Agronomy, Kansas State University, 2002 Throckmorton Hall, Manhattan 66506; second and sixth authors: Hard Winter Wheat Genetics Research Unit, United States Department of Agriculture–Agricultural Research Service (USDA-ARS), 4008 Throckmorton Hall, Manhattan, KS 66506; third author: Agricultural Research Center-Hays, Kansas State University, Hays 67601; and fourth author: Wheat, Peanut and Other Field Crop Research Unit, USDA-ARS, Stillwater, OK.

Abstract

CI13227 is a U.S. winter wheat line with adult-plant slow-rusting resistance that has been the subject of several studies on the characteristics and components of slow rusting. Previous genetic studies used different populations and approaches and came to different conclusions about the genetic basis of resistance in CI13227. To clarify the situation, a new doubled-haploid (DH) population of CI13227 × Lakin was produced and a linkage map was constructed using 5,570 single-nucleotide polymorphism (SNP) markers derived from wheat 90K SNP assays and 84 simple sequence repeat markers. Three quantitative trait loci (QTL) were identified for three slow-rusting traits on chromosome arms 2DS, 7AL, and 7BL from CI13227. A fourth QTL mapped on chromosome 3BS was from Lakin. The QTL on 2DS, designated QLr.hwwg-2DS, explained 11.2 to 25.6% of the phenotypic variation. It was found in the same position as a slow-rusting QTL in the CI13227 × Suwon 92 population in a previous study and, thus, verified the 2DS QTL. The QTL on chromosome 7BL explained 8.1 and 19.3% of the phenotypic variation and is likely to be Lr68. The other two QTL showed a minor effect on some of the traits evaluated in a single experiment. Flanking SNP closely linked to all QTL were converted to Kompetitive allele-specific polymerase chain reaction markers that can be used in marker-assisted selection to transfer these QTL into adapted wheat cultivars.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3