Molecular Detection of QoI Resistance in Colletotrichum gloeosporioides Causing Strawberry Anthracnose Based on Loop-Mediated Isothermal Amplification Assay

Author:

Wu J. Y.1ORCID,Hu X. R.1,Zhang C. Q.1ORCID

Affiliation:

1. College of Agriculture and Food Science, Zhejiang A&F University, Lin’an, Zhejiang, 311300, P.R. China

Abstract

Anthracnose is one of the most common diseases in strawberry plants. Colletotrichum gloeosporioides is the major cause of anthracnose in China, including Zhejiang Province. Early, specific, reliable, and time-saving detection is urgently needed to prevent the further spread of C. gloeosporioides, guiding farmers to utilize chemicals to control anthracnose. In this study, we showed that the high resistance to pyraclostrobin, caused by a point mutation at codon 143 (GGT→GCT) in the cytochrome b gene of C. gloeosporioides was prevalent in the strawberry growing regions, and we developed a loop-mediated isothermal amplification (LAMP) assay as a detection method. Primer sets S0 and S4 could be used to specifically detect C. gloeosporioides isolates and the G143A mutations, respectively. A detection limit of 10−2 ng (10 pg), which is at least 10-fold more sensitive than conventional polymerase chain reaction, was achieved by the LAMP assay. Here, we utilized lateral-flow devices (LFDs), nitrocellulose membranes that can absorb nucleic acids, to acquire the total genomic DNA of strawberry plants within 2 min. The LFD membranes were used as DNA templates for the LAMP assays to accurately detect strawberry plants infected with C. gloeosporioides. This diagnostic method for strawberry anthracnose was accomplished within 1 h, including the sample preparation and LAMP assays. Collectively, we developed a sensitive and practical method for monitoring C. gloeosporioides and its quinone outside inhibitor–resistant mutants. The LAMP assay for detection of C. gloeosporioides in strawberry plants has great potential for rapid strawberry anthracnose surveillance and will provide farmers with advice on preventing C gloeosporioides at the early stages of strawberry development.

Funder

National Natural Science Foundation of China

Science Technology Department of Zhejiang Province

Education Department of Zhejiang Province

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3