Diversity and Characterization of Resistance to Pyraclostrobin in Colletotrichum spp. from Strawberry

Author:

Hu Shuodan1,Zhang Shuhan1,Xiao Wenfei2,Liu Yahui1,Yu Hong2,Zhang Chuanqing1ORCID

Affiliation:

1. College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin’an, Hangzhou 311300, China

2. Research Institute for the Agriculture Science of Hangzhou, Hangzhou 310013, China

Abstract

Strawberry crown rot poses a significant menace to strawberry production during the seedling stage, and the main pathogen is Colletotrichum spp. Pyraclostrobin is one of the main fungicides that have been registered to control anthracnose caused by Colletotrichum spp. The diversity of pathogens and the risk of fungicide resistance may change from year to year. In order to explore the diversity of pathogens causing crown rot and evaluate the resistance risk of pathogens to pyraclostrobin in different years, crown rot samples were collected in Jiande, Zhejiang Province in 2019 and 2021, and the pathogens were identified. Based on the morphological identification and phylogenetic analysis based on ACT, CAL, CHS, GAPDH, and ITS, all 55 strains were identified as C. gloeosporioides species complexes, including 23 C. siamense isolates and 2 C. fructicola isolates in 2019, and all isolates were identified as C. siamense in 2021. C. siamense was the dominant pathogen of strawberry crown rot in 2019 and 2021. The resistance frequencies of the isolates collected in 2019 and 2021 to pyraclostrobin were 69.57% and 100%, respectively. In general, compared to that in 2019, the resistance frequencies of the pathogen to pyraclostrobin increased in 2021. In terms of fitness, there was no significant difference between resistant strains and sensitive strains in the mycelium growth rate, sporulation and spore germination rate. In addition, the resistant mutants exhibited positive cross-resistance to kresoxim-methyl and azoxystrobin. A sequential analysis of cytochrome b gene showed that C. siamense resistance to pyraclostrobin is linked to the G143A point mutation. Our study indicated that the risk of resistance a fungicide gradually increases with the increase in use years, and in order to reduce the emergence and spread of resistant populations, we should choose fungicides of different mechanisms of action for rotation to reduce the risk of resistance development.

Funder

Agriculture and Social Development Research Project of Hangzhou

Joint-Extension Project of important Agriculture Technology in Zhejiang Province

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3