Control of Egyptian Broomrape in Processing Tomato: A Summary of 20 Years of Research and Successful Implementation

Author:

Eizenberg Hanan1ORCID,Goldwasser Yaakov2

Affiliation:

1. Department of Plant Pathology and Weed Research, Newe Ya’ar Research Center, ARO, Israel

2. Department of Plant Pathology and Weed Research, Newe Ya’ar Research Center, ARO, Israel; and The RH Smith Institute of Plant Sciences & Genetics in Agriculture, Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel

Abstract

The obligate root parasitic weeds commonly known as broomrape (Orobanche and Phelipanche spp.) cause severe damage to vegetable and field crops worldwide. Efficient control of these parasites is difficult due to their development and attachment to the host plant (via a specialized organ, the haustorium) under the soil surface and to their unique biological traits of massive seed production, facile seed dispersal, germination only under specific conditions, and seed longevity. The major damage inflicted by the parasites takes place underground, making control extremely challenging. Egyptian broomrape (Phelipanche aegyptiaca) is a devastating pest in the Mediterranean basin, parasitizing a wide host crop range, including tomato, sunflower, legumes, and carrot, resulting in severe crop losses. Twenty years of research have led to the development of integrated smart management strategies for combating this parasite in processing tomato fields. In particular, an explicit decision support system (DSS) designated PICKIT has been developed; this DSS is based on predicting parasitism dynamics and employing a range of selective targeted chemical applications (preplanting incorporation, foliar application, and herbigation). In this feature article, we describe the evolution of this research from the laboratory, through greenhouse and experimental field trials, to large scale commercial fields and the successful assimilation of PICKIT into agricultural practice. The use of PICKIT in fields of processing tomatoes in northern Israel has led to effective control of Egyptian broomrape, even in fields with high infestation levels, resulting in a tomato yield increase of an average of 40 tons ha−1 compared with nontreated plots. In 2016, PICKIT was commercially implemented in 33 fields, totaling 400 ha, giving 95% Egyptian broomrape control and tomato yields of 115 to 145 tons ha−1. The outcome of this research is now enabling farmers to grow tomatoes in Egyptian broomrape-infested fields with assured increased yields and hence high profits.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3