Affiliation:
1. Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China
2. Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, China
Abstract
Phelipanche aegyptiaca can infect many crops, causing large agricultural production losses. It is important to study the parasitism mechanism of P. aegyptiaca to control its harm. In this experiment, the P. aegyptiaca HY13M and TE9M from Tacheng Prefecture and Hami City in Xinjiang, respectively, were used to analyze the parasitical mechanism of P. aegyptiaca by means of transcriptome and proteome analyses. The parasitic capacity of TE9M was significantly stronger than that of HY13M in Citrullus lanatus. The results showed that the DEGs and DEPs were prominently enriched in the cell wall metabolism pathways, including “cell wall organization or biogenesis”, “cell wall organization”, and “cell wall”. Moreover, the functions of the pectinesterase enzyme gene (TR138070_c0_g), which is involved in the cell wall metabolism of P. aegyptiaca in its parasitism, were studied by means HIGS. The number and weight of P. aegyptiaca were significantly reduced when TR138070_c0_g1, which encodes a cell-wall-degrading protease, was silenced, indicating that it positively regulates P. aegyptiaca parasitism. Thus, these results suggest that the cell wall metabolism pathway is involved in P. aegyptiaca differentiation of the parasitic ability and that the TR138070_c0_g1 gene plays an important role in P. aegyptiaca’s parasitism.
Funder
National Natural Science Foundation of China
XPCC