Affiliation:
1. Karlsruhe Institute of Technology (KIT)–South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4,D-76131 Karlsruhe, Germany
Abstract
The black mold Alternaria alternata causes dramatic losses in agriculture due to postharvest colonization and mycotoxin formation and is a weak pathogen on living plants. Fungal signaling processes are crucial for successful colonization of a host plant. Because the mitogen-activated protein kinase HogA is important for the expression of stress-associated genes, we tested a ∆hogA-deletion strain for pathogenicity. When conidia were used as inoculum, the ∆hogA-deletion strain was largely impaired in colonizing tomato and apple. In comparison, hyphae as inoculum colonized the fruit very well. Hence, HogA appears to be important only in the initial stages of plant colonization. A similar difference between conidial inoculum and hyphal inoculum was observed on artificial medium in the presence of different stress agents. Whereas wild-type conidia adapted well to different stresses, the ∆hogA-deletion strain failed to grow under the same conditions. With hyphae as inoculum, the wild type and the ∆hogA-deletion strain grew in a very similar way. At the molecular level, we observed upregulation of several catalase (catA, -B, and -D) and superoxide dismutase (sodA, -B, and -E) genes in germlings but not in hyphae after exposure to 4 mM hydrogen peroxide. The upregulation required the high osmolarity glycerol (HOG) pathway. In contrast, in mycelia, catD, sodA, sodB, and sodE were upregulated upon stress in the absence of HogA. Several other stress-related genes behaved in a similar way.
Funder
German Science Foundation
Subject
Agronomy and Crop Science,General Medicine,Physiology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献