The Proteomics of Resistance to Halo Blight in Common Bean

Author:

Cooper Bret1ORCID,Campbell Kimberly B.1,Beard Hunter S.1,Garrett Wesley M.2,Ferreira Marcio E.34

Affiliation:

1. Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, U.S.A.

2. Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, MD, U.S.A.

3. Embrapa Genetic Resources and Biotechnology, Embrapa, Brasilia, DF, Brazil

4. Embrapa Labex U.S.A., USDA-ARS, Beltsville, MD, U.S.A.

Abstract

Halo blight disease of beans is caused by a gram-negative bacterium, Pseudomonas syringae pv. phaseolicola. The disease is prevalent in South America and Africa and causes crop loss for indigent people who rely on beans as a primary source of daily nutrition. In susceptible beans, P. syringae pv. phaseolicola causes water-soaking at the site of infection and produces phaseolotoxin, an inhibitor of bean arginine biosynthesis. In resistant beans, P. syringae pv. phaseolicola triggers a hypersensitive response that limits the spread of infection. Here, we used high-throughput mass spectrometry to interrogate the responses to two different P. syringae pv. phaseolicola isolates on a single line of common bean, Phaseolus vulgaris PI G19833, with a reference genome sequence. We obtained quantitative information for 4,135 bean proteins. A subset of 160 proteins with similar accumulation changes during both susceptible and resistant reactions included salicylic acid responders EDS1 and NDR1, ethylene and jasmonic acid biosynthesis enzymes, and proteins enabling vesicle secretion. These proteins revealed the activation of a basal defense involving hormonal responses and the mobilization of extracellular proteins. A subset of 29 proteins specific to hypersensitive immunity included SOBIR1, a G-type lectin receptor–like kinase, and enzymes needed for glucoside and phytoalexin production. Virus-induced gene silencing revealed that the G-type lectin receptor–like kinase suppresses bacterial infection. Together, the results define the proteomics of disease resistance to P. syringae pv. phaseolicola in beans and support a model whereby the induction of hypersensitive immunity reinstates defenses targeted by P. syringae pv. phaseolicola.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3