Reshaping the Primary Cell Wall: Dual Effects on Plant Resistance to Ralstonia solanacearum and Heat Stress Response

Author:

Desaint Henri12,Gigli Alessandro13,Belny Adrien1ORCID,Cassan-Wang Hua4,Martinez Yves5,Vailleau Fabienne1,Mounet Fabien4,Vernhettes Samantha6,Berthomé Richard1,Marchetti Marta1ORCID

Affiliation:

1. Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31320, France

2. SYNGENTA Seeds, Sarrians 84260, France

3. Department of Biology, University of Florence, Sesto Fiorentino, Italy

4. Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, INP, UMR5546, Castanet-Tolosan 31320, France

5. Plateforme Imagerie, FRAIB-CNRS, Castanet-Tolosan 31320, France

6. AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, Versailles 78000, France

Abstract

Temperature elevation drastically affects plant defense responses to Ralstonia solanacearum and inhibits the major source of resistance in Arabidopsis thaliana, which is mediated by the receptor pair RRS1-R/RPS4. In this study, we refined a previous genome-wide association (GWA) mapping analysis by using a local score approach and detected the primary cell wall CESA3 gene as a major gene involved in plant response to  R. solanacearum at both 27°C and an elevated temperature, 30°C. We functionally validated  CESA3 as a susceptibility gene involved in resistance to  R. solanacearum at both 27 and 30°C through a reverse genetic approach. We provide evidence that the  cesa3mre1 mutant enhances resistance to bacterial disease and that resistance is associated with an alteration of root cell morphology conserved at elevated temperatures. However, even by forcing the entry of the bacterium to bypass the primary cell wall barrier, the  cesa3mre1 mutant still showed enhanced resistance to  R. solanacearum with delayed onset of bacterial wilt symptoms. We demonstrated that the  cesa3mre1 mutant had constitutive expression of the defense-related gene  VSP1, which is upregulated at elevated temperatures, and that during infection, its expression level is maintained higher than in the wild-type Col-0. In conclusion, this study reveals that alteration of the primary cell wall by mutating the cellulose synthase subunit CESA3 contributes to enhanced resistance to R. solanacearum, remaining effective under heat stress. We expect that these results will help to identify robust genetic sources of resistance to  R. solanacearum in the context of global warming. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

Funder

FR-AIB Federation

Saclay Plant Sciences-SPS

Laboratoires d'Excellence (LABEX) TULIP

École Universitaire de Recherche (EUR) TULIP-GS

Publisher

Scientific Societies

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3