Insights into Metabolic Changes Caused by the Trichoderma virens–Maize Root Interaction

Author:

Schweiger Rabea1ORCID,Padilla-Arizmendi Fabiola2,Nogueira-López Guillermo2,Rostás Michael23,Lawry Robert2,Brown Chris4,Hampton John2,Steyaert Johanna M.5,Müller Caroline1,Mendoza-Mendoza Artemio2

Affiliation:

1. Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany

2. Bio-Protection Research Centre, Lincoln University, Lincoln 7647, Canterbury, New Zealand

3. Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Grisebachstr. 6, 37077 Göttingen, Germany

4. Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand

5. Lincoln Agritech Ltd., PO Box 69133, Lincoln, Christchurch 7460, New Zealand

Abstract

The interactions of crops with root-colonizing endophytic microorganisms are highly relevant to agriculture, because endophytes can modify plant resistance to pests and increase crop yields. We investigated the interactions between the host plant Zea mays and the endophytic fungus Trichoderma virens at 5 days postinoculation grown in a hydroponic system. Wild-type T. virens and two knockout mutants, with deletion of the genes tv2og1 or vir4 involved in specialized metabolism, were analyzed. Root colonization by the fungal mutants was lower than that by the wild type. All fungal genotypes suppressed root biomass. Metabolic fingerprinting of roots, mycelia, and fungal culture supernatants was performed using ultrahigh performance liquid chromatography coupled to diode array detection and quadrupole time-of-flight tandem mass spectrometry. The metabolic composition of T. virens-colonized roots differed profoundly from that of noncolonized roots, with the effects depending on the fungal genotype. In particular, the concentrations of several metabolites derived from the shikimate pathway, including an amino acid and several flavonoids, were modulated. The expression levels of some genes coding for enzymes involved in these pathways were affected if roots were colonized by the ∆vir4 genotype of T. virens. Furthermore, mycelia and fungal culture supernatants of the different T. virens genotypes showed distinct metabolomes. Our study highlights the fact that colonization by endophytic T. virens leads to far-reaching metabolic changes, partly related to two fungal genes. Both metabolites produced by the fungus and plant metabolites modulated by the interaction probably contribute to these metabolic patterns. The metabolic changes in plant tissues may be interlinked with systemic endophyte effects often observed in later plant developmental stages. [Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .

Funder

Deutsche Forschungsgemeinschaft

Tertiary Education Commission Bio-Protection Research Centre

Consejo Nacional de Ciencia y Tecnología

Royal Society Marsden

Ministry of Business, Innovation & Employment

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3