Affiliation:
1. Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
Abstract
The phenomenon of biological ice nucleation that is exhibited by a variety of bacteria is a fascinating phenotype, which has been shown to incite frost damage to frost-sensitive plants and has been proposed to contribute to atmospheric processes that affect the water cycle and earth's radiation balance. This review explores the several possible drivers for the evolutionary origin of the ice nucleation phenotype. These bacteria and the gene required for this phenotype have also been exploited in processes as diverse as reporter gene assays to assess environmentally responsive gene expression in various plant pathogenic and environmental bacteria and in the detection of foodborne human pathogens when coupled with host-specific bacteriophage, whereas ice nucleating bacteria themselves have been exploited in the production of artificial snow for recreation and oil exploration and in the process of freezing of various food products. This review also examines the historical development of our understanding of ice nucleating bacteria, details of the genetic determinants of ice nucleation, and features of the aggregates of membrane-bound ice nucleation protein necessary for catalyzing ice. Lastly, this review also explores the role of these bacteria in limiting the supercooling ability of plants and the strategies and limitations of avoiding plant frost damage by managing these bacterial populations by bactericides, antagonistic bacteria, or cultural control strategies.
Subject
Plant Science,Agronomy and Crop Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献