Advances in Understanding Fungicide Resistance in Botrytis cinerea in China

Author:

Shao Wenyong1,Zhao Youfu2ORCID,Ma Zhonghua13ORCID

Affiliation:

1. Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China

2. Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, U.S.A.

3. State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China

Abstract

Gray mold, caused by Botrytis cinerea, is a devastating disease that causes significant yield losses in various economically important plants. Fungicide application is one of the main strategies for management of gray mold; however, B. cinerea has developed resistance to various groups of fungicide. In China, benzimidazole-, dicarboximide-, and quinone outside inhibitor-resistant populations of B. cinerea have become dominant. Substitute mutations in fungicide target genes are responsible for resistance in B. cinerea. Based on known resistance mechanisms, molecular methods including loop-mediated isothermal amplification have been developed for rapid detection of resistant isolates of B. cinerea. Because B. cinerea is able to quickly develop resistance to various fungicides, various integrated strategies have been implemented in the last decade, including biological and agricultural practices, to manage fungicide resistance in B. cinerea.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3