Molecular Mapping of the Stripe Rust Resistance Gene Yr69 on Wheat Chromosome 2AS

Author:

Hou Liyuan1,Jia Juqing2,Zhang Xiaojun3,Li Xin3,Yang Zujun4,Ma Jian5,Guo Huijuan3,Zhan Haixian3,Qiao Linyi3,Chang Zhijian3

Affiliation:

1. College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China

2. College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi, China

3. Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China, and Shanxi Key Laboratory for Crop Genetics and Gene Improvement, Taiyuan 030031, Shanxi, China

4. School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China

5. Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China

Abstract

Wheat is one of the major food crops in the world. Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an economically important disease that affects wheat worldwide. The discovery of novel resistance genes and the deployment of effectively resistant cultivars are important for the ongoing control of wheat stripe rust and the maintenance of the agricultural productivity of wheat. CH7086, a new stripe rust-resistant wheat introgression line, was selected by crossing susceptible cultivars with the resistant Thinopyrum ponticum-derived partial amphiploid Xiaoyan 7430. The resistance of CH7086 is effective against all current Chinese P. striiformis f. sp. tritici races. CH7086 was crossed with the stripe rust-susceptible cultivars to develop F1, F2, F3, and BC1 populations for genetic analysis. Segregation in the F2 and BC1 populations and F2:3 lines were tested for resistance against the P. striiformis f. sp. tritici race CYR32. This test showed that CH7086 carries a single dominant gene for stripe rust resistance, which was temporarily designated YrCH86. The closest of the eight simple sequence repeat (SSR) and expressed sequence tag-SSR markers flanking the locus were X2AS33, which is 1.9 cM distal, and Xmag3807, which is 3.1 cM proximal. The resistance gene and its polymorphic markers were placed in deletion bin 2AS-0.78-1.00 using the ‘Chinese Spring’ nullisomic-tetrasomic, ditelosomic, and deletion lines. The tests of both allelism and resistance specificity suggested that the resistance gene found in CH7086 was not Yr17, which was the only current formally named Yr gene on chromosome 2AS. Thus, YrCH86 appeared to be a new locus and was permanently designated Yr69.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3