Development and Characterization of a Novel Wheat–Tetraploid Thinopyrum elongatum 6E (6D) Disomic Substitution Line with Stripe Rust Resistance at the Adult Stage

Author:

Gong Biran12,Zhao Lei12,Zeng Chunyan12,Zhu Wei12,Xu Lili2,Wu Dandan12,Cheng Yiran1,Wang Yi12,Zeng Jian3ORCID,Fan Xing12,Sha Lina4,Zhang Haiqin4ORCID,Chen Guoyue12,Zhou Yonghong12,Kang Houyang12

Affiliation:

1. State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China

2. Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China

3. College of Resources, Sichuan Agricultural University, Chengdu 611130, China

4. College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China

Abstract

Stripe rust, which is caused by Puccinia striiformis f. sp. tritici, is one of the most devastating foliar diseases of common wheat worldwide. Breeding new wheat varieties with durable resistance is the most effective way of controlling the disease. Tetraploid Thinopyrum elongatum (2n = 4x = 28, EEEE) carries a variety of genes conferring resistance to multiple diseases, including stripe rust, Fusarium head blight, and powdery mildew, which makes it a valuable tertiary genetic resource for enhancing wheat cultivar improvement. Here, a novel wheat–tetraploid Th. elongatum 6E (6D) disomic substitution line (K17-1065-4) was characterized using genomic in situ hybridization and fluorescence in situ hybridization chromosome painting analyses. The evaluation of disease responses revealed that K17-1065-4 is highly resistant to stripe rust at the adult stage. By analyzing the whole-genome sequence of diploid Th. elongatum, we detected 3382 specific SSR sequences on chromosome 6E. Sixty SSR markers were developed, and thirty-three of them can accurately trace chromosome 6E of tetraploid Th. elongatum, which were linked to the disease resistance gene(s) in the wheat genetic background. The molecular marker analysis indicated that 10 markers may be used to distinguish Th. elongatum from other wheat-related species. Thus, K17-1065-4 carrying the stripe rust resistance gene(s) is a novel germplasm useful for breeding disease-resistant wheat cultivars. The molecular markers developed in this study may facilitate the mapping of the stripe rust resistance gene on chromosome 6E of tetraploid Th. elongatum.

Funder

Major Program of National Agricultural Science and Technology of China

National Natural Science Foundation of China

Science and Technology Bureau of Sichuan Province

Science and Technology Bureau of Chengdu City

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3