Genome-Wide Association Mapping in Sunflower (Helianthus annuus) Reveals Common Loci and Putative Candidate Genes for Resistance to Diaporthe gulyae and D. helianthi Causing Phomopsis Stem Canker

Author:

Guidini Renan1,Jahani Mojtaba2,Huang Kaichi2ORCID,Rieseberg Loren2,Mathew Febina M.1ORCID

Affiliation:

1. Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD 57007, U.S.A.

2. Department of Botany and Beaty Biodiversity Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada

Abstract

Diaporthe gulyae and D. helianthi cause Phomopsis stem canker of sunflower (Helianthus annuus L.) in the United States. Because Phomopsis stem canker did not gain importance until the disease epidemic in 2010, limited studies were conducted to understand the genetic basis of sunflower resistance to D. gulyae and D. helianthi. The objectives of this study were to evaluate the United States Department of Agriculture cultivated accessions for resistance to D. gulyae and D. helianthi as well as to utilize genome-wide association studies (GWAS) to identify quantitative trait loci (QTLs) and putative candidate genes underlying those loci common to both organisms. For each fungus, 213 accessions were screened in a complete randomized design in the greenhouse and the experiment was repeated once. Six plants per accession were inoculated with a single isolate of D. gulyae or D. helianthi at four to six true leaves using the mycelium-contact inoculation method. At 15 days (D. gulyae) and 30 days (D. helianthi) postinoculation, accessions were evaluated for disease severity and compared with the susceptible confection inbred PI 552934. GWAS identified 28 QTLs common to the two fungi, and 24 genes overlapped close to these QTLs. Additionally, it was observed that the resistance QTLs derived mainly from landraces rather than from wild species. Seventeen putative candidate genes associated with resistance to D. gulyae or D. helianthi were identified that may be related to plant–pathogen interactions. These findings advanced our understanding of the genetic basis of resistance to D. gulyae and D. helianthi and will help develop resources for genomics-assisted breeding.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3