Diversity and Aggressiveness of the Diaporthe Species Complex on Sunflower in Serbia

Author:

Krsmanović Slobodan1,Riccioni Luca2,Dedić Boško3,Mathew Febina Merlin4ORCID,Tolimir Miodrag5,Stojšin Vera6,Petrović Kristina57ORCID

Affiliation:

1. Agromarket BiH, Bijeljina 76300, Bosnia and Herzegovina

2. Council for Agricultural Research and Economics (CREA), Research Center for Plant Protection and Certification (CREA-DC), 00156 Rome, Italy

3. Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad 21000, Serbia

4. Plant Pathology Department, North Dakota State University, Fargo, ND 58102, U.S.A.

5. Maize Research Institute, Zemun Polje, Belgrade 11185, Serbia

6. Faculty of Agriculture, University of Novi Sad, Novi Sad 21001, Serbia

7. BioSense Institute, University of Novi Sad, Novi Sad 21001, Serbia

Abstract

This study aimed to investigate the Diaporthe species associated with Phomopsis stem canker of sunflower (Helianthus annuus L.) in Serbia. The significant increase in sunflower and soybean (Glycine max [L.] Merr.) cultivation may have created the bridge favorable conditions for the distribution of Diaporthe species in this region. The present study identified five Diaporthe species on sunflower: D. gulyae, D. helianthi, D. pseudolongicolla, D. stewartii, and the newly identified D. riccionae based on morphological, molecular, and pathogenic characteristics. The research emphasizes the importance of effective inoculation methods and evaluates the aggressiveness of isolates. Sunflower plants were inoculated using the stem wound method, while seeds of sunflower and soybean were inoculated using the standard seed method. Most of the tested isolates demonstrated high aggressiveness, resulting in more than 80% premature wilting of sunflower plants. Additionally, this research examined the aggressiveness of Diaporthe species on sunflower seeds, highlighting D. stewartii and D. pseudolongicolla as common pathogens of both sunflower and soybean. The most aggressive species on seeds was D. stewartii, causing seed decay of up to 100% in sunflower and 97% in soybean. The findings suggest the development of resilient sunflower genotypes through breeding programs and the implementation of strategies to manage cross-contamination risks between sunflower and soybean crops. Furthermore, this study provides insights into the interactions between Diaporthe species and the seeds of sunflower and soybean. Future research will enhance our understanding of the impact of Diaporthe species on sunflower and soybean.

Funder

Ministry of Science, Technological Development, and Innovation of the Republic of Serbia

Publisher

Scientific Societies

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3