Viewpoint: Mechanisms of Action and Therapeutic Potential of Neurohormetic Phytochemicals

Author:

Mattson Mark. P.,Son Tae Gen,Camandola Simonetta

Abstract

The nervous system is of fundamental importance in the adaptive (hormesis) responses of organisms to all types of stress, including environmental “toxins”. Phytochemicals present in vegetables and fruits are believed to reduce the risk of several major diseases including cardiovascular disease, cancers and neurodegenerative disorders. Although antioxidant properties have been suggested as the basis of health benefits of phytochemicals, emerging findings suggest a quite different mechanism of action. Many phytochemicals normally function as toxins that protect the plants against insects and other damaging organisms. However, at the relatively low doses consumed by humans and other mammals these same “toxic” phytochemicals activate adaptive cellular stress response pathways that can protect the cells against a variety of adverse conditions. Recent findings have elucidated hormetic mechanisms of action of phytochemicals (e.g., resveratrol, curcumin, sulforaphanes and catechins) using cell culture and animal models of neurological disorders. Examples of hormesis pathways activated by phytochemicals include the transcription factor Nrf-2 which activates genes controlled by the antioxidant response element, and histone deacetylases of the sirtuin family and FOXO transcription factors. Such hormetic pathways stimulate the production of antioxidant enzymes, protein chaperones and neurotrophic factors. In several cases neurohormetic phytochemicals have been shown to suppress the disease process in animal models relevant to neurodegenerative disorders such as Alzheimer's and Parkinson's diseaess, and can also improve outcome following a stroke. We are currently screening a panel of biopesticides in order to establish hormetic doses, neuroprotective efficacy, mechanisms of action and therapeutic potential as dietary supplements.

Publisher

SAGE Publications

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3