Prediction of Polymer Flow Length by Coupling Finite Element Simulation with Artificial Neural Network

Author:

Sandu Ionut Laurentiu,Susac Florin,Stan Felicia,Fetecau Catalin

Abstract

In this study, computer-aided engineering (CAE) simulation software and the design of experiments (DOE) method were used to simulate the injection molding process in terms of the melt flow length, using a spiral part. Process parameters such as melt temperature, mold temperature, injection pressure and mold cavity thickness were considered as injection molding variables. A predictive model for the flow length was created using a three-layer artificial neural network (ANN). The ANN model was trained with both simulation and experimental data, and the predictive performances were compared in terms of correlation coefficient, root mean square error and mean relative error. The cavity thickness and melt temperature were found to be the most significant factors for both the simulation and the experiment, while the injection pressure and the mold temperature had little effect on the flow length. The ANN model trained with Moldex3D data shows a significantly higher prediction capacity than the ANN model trained with experimental data. However, the melt flow lengths predicted by the ANN model for both Moldex3D and Moldflow simulation data are statistically significant, indicating that the proposed prediction methodology, which combines the ANN model, DOE method and the CAE simulation technology, can effectively predict the flow length of injection molded parts, with a small number of data.

Publisher

Revista de Chimie SRL

Subject

Materials Chemistry,Polymers and Plastics,Mechanics of Materials,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3