Exploring the applicability of the experiment-based ANN and LSTM models for streamflow estimation

Author:

Akiner Muhammed ErnurORCID,Kartal VeysiORCID,Guzeler Anil CanORCID,Karakoyun ErkanORCID

Abstract

AbstractThe Yeşilırmak River Basin in northern Türkiye is crucial for the region’s water supply, agriculture, hydroelectric power generation, and clean drinking water. The primary goal of this study is to determine which modeling approach is most appropriate for various locations within the basin and how well meteorological data can predict river flow rates. Hydrological and meteorological forecasting both depend on the prediction of river flow rates. An artificial neural network (ANN), Univariate and Multivariate Long Short-Term Memory (LSTM) models have been utilized for streamflow forecasting. This research aims to determine the best model for several provinces in the basin area and give decision-makers a tool for reliable river flow rate estimates by combining LSTM and ANN models. According to research findings, the supervised multivariate LSTM model performed better than the unsupervised model in accuracy and precision. The sliding window methodology is suitable for estimating river flow based on meteorological datasets because it offers a primary method for reinterpreting time-series data in a supervised learning style. Compared to LSTM models, the ANN model that has been statistically optimized through experiments (DoE) design performs better in forecasting the river flow rate in the Yeşilırmak River basin (R2 = 0.98, RMSE = 0.18). The study’s findings provided prospective cognitive models for the strategic management of water resources by forecasting future data from flow monitoring stations.

Funder

Siirt University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3