Application study of IFAS and LSTM models on runoff simulation and flood prediction in the Tokachi River basin

Author:

Chen Yue-Chao1,Gao Jia-Jia1,Bin Zhao-Hui2ORCID,Qian Jia-Zhong3,Pei Rui-Liang4,Zhu Hua2

Affiliation:

1. Graduate School of Engineering, Muroran Institute of Technology, Muroran 0508585, Hokkaido, Japan

2. Henan Institute of Geological Sciences, Zhengzhou 450001, China

3. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China

4. Henan Institute of Geological Survey, Zhengzhou 450001, China

Abstract

Abstract Floods are often caused by short-term heavy rainfall. An Integrated Flood Analysis System (IFAS) model is good at runoff simulation and a Long Short-Term Memory (LSTM) model is good at learning massive data and realizing rainfall forecast. In this paper, the applicability of the IFAS model to runoff simulation in the Tokachi River basin and the LSTM model to forecast hourly rainfall was studied, and the accuracy of flood prediction was also studied by inputting the optimal rainfall data forecasted by the LSTM model into the IFAS model. The research results show that the IFAS model can accurately simulate the runoff process in the Tokachi River basin. In the calibration period and the verification period, the Nash–Sutcliffe Efficiency coefficient (NSE) of all simulation results are above 0.75; the LSTM model can achieve forecast hourly rainfall with high precision, the NSE of best forecast results is 0.86; the IFAS model can achieve flood prediction with high precision by using the optimal rainfall data forecasted by the LSTM model, the NSE of simulation result is 0.81. The above conclusions show that it is of great significance to combine the hourly rainfall forecasted by the LSTM model with the IFAS model for flood prediction.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3