Hepatitis C Risk Prediction Based on Adaboost

Author:

Yang Jingbo

Abstract

Hepatitis C is one of the major public health threats. The incidence of liver cirrhosis in 20 years after infection is about 20%, and the annual incidence of hepatocellular carcinoma is 2% - 4%, which is extremely harmful to the health and life of patients. However, people's understanding of hepatitis C is not comprehensive, and only 1 percent of hepatitis C patients worldwide have received effective treatment. At the same time, the early symptoms of hepatitis C are not obvious, and the differences between acute and chronic hepatitis C are large, leading many people to miss the best time for treatment. Therefore, reasonable prediction and classification of hepatitis C at an early stage can provide the most accurate medical guidance for patients and people with related symptoms. Machine learning is widely used in the prediction and classification of diseases in various medical fields, and its maturity has also been widely verified. In this paper, several types of machine learning models represented by decision trees are constructed in Python language to learn and predict the data provided by Ainshams University, and the accuracy rate is 72%. Finally, the data of the data set is analyzed, and relevant suggestions for preventing hepatitis C and in the treatment process are given.

Publisher

Darcy & Roy Press Co. Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3