Treatment Response Prediction in Hepatitis C Patients using Machine Learning Techniques

Author:

Kashif Ashfaq Ali,Bakhtawar Birra,Akhtar Asma,Akhtar Samia,Aziz Nauman,Javeid Muhammad Sheraz

Abstract

The proper prognosis of treatment response is crucial in any medical therapy to reduce the effects of the disease and of the medication as well. The mortality rate due to hepatitis c virus (HCV) is high in Pakistan as well as all over the world. During the treatment of any disease, prediction of treatment response against any particular medicine is difficult. This paper focuses on predicting the treatment response of a drug: “L-ornithine L-Aspartate (LOLA)” in hepatitis c patients. We have used various machine learning techniques for the prediction of treatment response, including: “K Nearest Neighbor, kStar, Naive Bayes, Random Forest, Radial Basis Function, PART, Decision Tree, OneR, Support Vector Machine and Multi-Layer Perceptron”. Performance measures used to analyze the performance of used machine learning techniques include, “Accuracy, Recall, Precision, and F-Measure”.

Publisher

Global Academic Forum on Technology, Innovation And Management (GAFTIM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3