Dendrometric variables and traumatic resin ducts in pine species associated with wood-stripping: a traditional practice in the conifer forests of Central Mexico

Author:

Díaz-Carranza GuadalupeORCID,Andrés Hernandez Agustina RosaORCID,Guillén SusanaORCID,Rivas-Arancibia Sombra PatriciaORCID,Montoya Esquivel AdrianaORCID

Abstract

Background: In La Malinche National Park (LMNP), Pinus species are exploited mainly because they are a non-woody source of products such as ocote (resinous wood chips) and wood.   Questions/Objective: Which Pinus species are subjected to wood-stripping (WS) in the LMNP? What are their dendrometric characteristics? Do WS trees present traumatic resin ducts associated with the ocoteo practice? Does the number of trees subjected to WS increase with altitude? Study site and dates: La Malinche National Park; Tlaxcala, México, 2017-2018. Methods: Random stratified sampling was done in a total of 33 plots in three different altitudes to quantify the number of damaged and undamaged trees and the total height and diameter per tree in each plot. Increment borers were obtained to estimate tree age, samples were taken for taxonomic determination, and tissue samples to evaluate mechanical damage. Results: Pine species subjected to wood-stripping (ocoteo) were P. leiophylla, P. montezumae, P. pseudostrobus, and P. teocote, with P. montezumae being the most affected in high and mid altitudes. WS trees were those with the greatest diameter and with the largest number of traumatic resin ducts. The species having the highest number of traumatic resin ducts was P. teocote. Conclusions: WS intensity in the LMNP is greater in the mid and low altitudes and in trees of greater diameter, height, and age. The species most affected by WS is P. montezumae and all WS individuals have a significantly higher number of traumatic resin ducts.

Publisher

Botanical Sciences, Sociedad Botanica de Mexico, AC

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3