A Sequential Detection Method for Intrusion Detection System Based on Artificial Neural Networks
Author:
Affiliation:
1. Kyushu University
Publisher
IJNC Editorial Committee
Link
https://www.jstage.jst.go.jp/article/ijnc/10/2/10_213/_pdf
Reference20 articles.
1. [1] Kaspersky Lab detects 360,000 new malicious files daily: https://www.kaspersky.com/about/press-releases/2017_kaspersky-lab-detects-360000-new-malicious-files-daily (accessed on April 29, 2020).
2. [2] 5 Biggest Cyberattacks of 2019 and Lessons Learned: https://www.gflesch.com/blog/biggest-cyberattacks-2019 (accessed on April 29, 2020).
3. [3] Ozgur A and Erdem H. A review of kdd99 dataset usage in intrusion detection and machine learning between 2010 and 2015[j]. PeerJ Preprints, 4, 2016.
4. [4] Shams E A and Rizaner A. A novel support vector machine based intrusion detection system for mobile ad hoc networks. Wireless Networks, 2018.
5. [6] Lin W C and Ke S W. An intrusion detection system based on combining cluster centers and nearest neighbors. Knowledge-based systems, 2015.
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Modern Approach to Securing Critical Infrastructure in Energy Transmission Networks: Integration of Cryptographic Mechanisms and Biometric Data;Electronics;2024-07-19
2. IoT Cyber Attacks Detection - Survey;2024 16th International Conference on Electronics, Computers and Artificial Intelligence (ECAI);2024-06-27
3. Secure and Efficient IoT Networks: An AI and ML-based Intrusion Detection System;2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT);2024-05-03
4. Design and Performance Evaluation of a Two-Stage Detection of DDoS Attacks Using a Trigger with a Feature on Riemannian Manifolds;Lecture Notes on Data Engineering and Communications Technologies;2024
5. A Review of Deep Learning based Intrusion Detection Systems;2023 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS);2023-11-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3