A review of KDD99 dataset usage in intrusion detection and machine learning between 2010 and 2015

Author:

Özgür Atilla1,Erdem Hamit1

Affiliation:

1. Electrical Engineering, Başkent University, Ankara, Ankara, Turkey

Abstract

Although KDD99 dataset is more than 15 years old, it is still widely used in academic research. To investigate wide usage of this dataset in Machine Learning Research (MLR) and Intrusion Detection Systems (IDS); this study reviews 149 research articles from 65 journals indexed in Science Citation In- dex Expanded and Emerging Sources Citation Index during the last six years (2010–2015). If we include papers presented in other indexes and conferences, number of studies would be tripled. The number of published studies shows that KDD99 is the most used dataset in IDS and machine learning areas, and it is the de facto dataset for these research areas. To show recent usage of KDD99 and the related sub-dataset (NSL-KDD) in IDS and MLR, the following de- scriptive statistics about the reviewed studies are given: main contribution of articles, the applied algorithms, compared classification algorithms, software toolbox usage, the size and type of the used dataset for training and test- ing, and classification output classes (binary, multi-class). In addition to these statistics, a checklist for future researchers that work in this area is provided.

Publisher

PeerJ

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3