Author:
Haghighi Ahmadreza,Ziaratban Roveida
Abstract
AbstractIn this study, we examine the stabilization of fractional-order chaotic nonlinear dynamical systems with model uncertainties and external disturbances. We used the sliding mode controller by a new approach for controlling and stabilization of these systems. In this research, we replaced a continuous function with the sign function in the controller design and the sliding surface to suppress chattering and undesirable vibration effects. The advantages of the proposed control method are rapid convergence to the equilibrium point, the absence of chattering and unwanted oscillations, high resistance to uncertainties, and the possibility of applying this method to most fractional order chaotic systems. We applied the direct method of Lyapunov stability theory and the frequency distributed model to prove the stability of the slip surface and closed loop system. Finally, we simulated this method on two commonly used and practical chaotic systems and presented the results.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献