A No-Chatter Single-Input Finite-Time PID Sliding Mode Control Technique for Stabilization of a Class of 4D Chaotic Fractional-Order Laser Systems

Author:

Roohi Majid12ORCID,Mirzajani Saeed3,Basse-O’Connor Andreas2

Affiliation:

1. School of Economics and Statistics, Guangzhou University, Guangzhou 510006, China

2. Department of Mathematics, Aarhus University, 8000 Aarhus, Denmark

3. Department of Mathematics, Payame Noor University, Tehran 19395-3697, Iran

Abstract

Over the past decade, fractional-order laser chaotic systems have attracted a lot of attention from a variety of fields, including theoretical research as well as practical applications, which has resulted in the development of a number of different system classes. This paper introduces a novel single-input finite-time PID sliding mode control (SMC) technique to stabilize a specific group of unknown 4-dimensional chaotic fractional-order (FO) laser systems. By combining the PID concept with the FO-version of the Lyapunov stability theory, a novel finite-time PID SMC strategy has been developed, which effectively mitigates chaotic behavior in the mentioned unknown 4-dimensional chaotic FO laser system. This method makes use of a characteristic of FO chaotic systems known as boundedness, which is used here. Notably, the control input’s sign function, which is responsible for undesirable chattering, is transformed into the fractional derivative of the control input. This transformation results in a smooth and chattering-free control input, further enhancing the method’s performance. To demonstrate the efficacy of the proposed chattering-free–finite-time PID SMC technique, two numerical scenarios are presented, showcasing its efficient performance in stabilizing the unknown 4-dimensional chaotic FO laser system. These scenarios serve as illustrations of the method’s potential for practical applications.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3