Abstract
AbstractThis paper deals with the generalized Bagley–Torvik equation based on the concept of the Caputo–Fabrizio fractional derivative using a modified reproducing kernel Hilbert space treatment. The generalized Bagley–Torvik equation is studied along with initial and boundary conditions to investigate numerical solution in the Caputo–Fabrizio sense. Regarding the generalized Bagley–Torvik equation with initial conditions, in order to have a better approach and lower cost, we reformulate the issue as a system of fractional differential equations while preserving the second type of these equations. Reproducing kernel functions are established to construct an orthogonal system used to formulate the analytical and approximate solutions of both equations in the appropriate Hilbert spaces. The feasibility of the proposed method and the effect of the novel derivative with the nonsingular kernel were verified by listing and treating several numerical examples with the required accuracy and speed. From a numerical point of view, the results obtained indicate the accuracy, efficiency, and reliability of the proposed method in solving various real life problems.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference47 articles.
1. Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, London (2005)
2. Podlubny, I., Magin, R.L., Trymorush, I.: Niels Henrik Abel and the birth of fractional calculus. Fract. Calc. Appl. Anal. 20(5), 1068–1075 (2017)
3. Al-Smadi, M., Abu Arqub, O., Momani, S.: Numerical computations of coupled fractional resonant Schrödinger equations arising in quantum mechanics under conformable fractional derivative sense. Phys. Scr. T 95(7), 075218 (2020)
4. Al-Smadi, M., Abu Arqub, O., Hadid, S.: An attractive analytical technique for coupled system of fractional partial differential equations in shallow water waves with conformable derivative. Commun. Theor. Phys. 72(8), 085001 (2020)
5. Hamani, S., Benhamida, W., Henderson, J.: Boundary value problems for Caputo-Hadamard fractional differential equations. Adv. Theory Nonlinear Anal. Appl. 2(3), 138–145 (2018)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献