A novel numerical approach to solutions of fractional Bagley-Torvik equation fitted with a fractional integral boundary condition

Author:

Aljazzazi Mazin1,Maayah Banan1,Djeddi Nadir2,Al-Smadi Mohammed345,Momani Shaher14

Affiliation:

1. Department of Mathematics, Faculty of Science, The University of Jordan , Amman , 11942 , Jordan

2. Department of Mathematics and Computer Science, Larbi Tebessi University , Tebessa 12002 , Algeria

3. College of Commerce and Business, Lusail University , Lusail , Qatar

4. Nonlinear Dynamics Research Center (NDRC), Ajman University , Ajman , UAE

5. Department of Applied Science, Ajloun College, Al Balqa Applied University , Ajloun , 26816 , Jordan

Abstract

Abstract In this work, we present a sophisticated operating algorithm, the reproducing kernel Hilbert space method, to investigate the approximate numerical solutions for a specific class of fractional Begley-Torvik equations (FBTE) equipped with fractional integral boundary condition. Such fractional integral boundary condition allows us to understand the non-local behavior of FBTE along with the given domain. The algorithm methodology depends on creating an orthonormal basis based on reproducing kernel function that satisfies the constraint boundary conditions so that the solution is finally formulated in the form of a uniformly convergent series in ϖ 3 [ a , b ] {\varpi }_{3}\left[a,b] . From a numerical point of view, some illustrative examples are provided to determine the appropriateness of algorithm design and the effect of using non-classical boundary conditions on the behavior of solutions approach.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3