Abstract
AbstractIn this paper, we mainly investigate the existence, continuous dependence, and the optimal control for nonlocal fractional differential evolution equations of order (1,2) in Banach spaces. We define a competent definition of a mild solution. On this basis, we verify the well-posedness of the mild solution. Meanwhile, with a construction of Lagrange problem, we elaborate the existence of optimal pairs of the fractional evolution systems. The main tools are the fractional calculus, cosine family, multivalued analysis, measure of noncompactness method, and fixed point theorem. Finally, an example is propounded to illustrate the validity of our main results.
Funder
Natural Science Foundation of Anhui Province
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference34 articles.
1. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
2. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
3. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)
4. Zhou, Y.: Fractional Evolution Equations and Inclusions: Analysis and Control. Academic Press, San Diego (2016)
5. Li, L., Liu, J.G., Wang, L.: Cauchy problems for Keller–Segel type time-space fractional diffusion equation. J. Differ. Equ. 265, 1044–1096 (2018)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献