Cauchy problems for Keller–Segel type time–space fractional diffusion equation
Author:
Funder
NSF
NSFC
Publisher
Elsevier BV
Subject
Analysis,Applied Mathematics
Reference50 articles.
1. A parabolic problem with a fractional time derivative;Allen;Arch. Ration. Mech. Anal.,2016
2. Porous medium flow with both a fractional potential pressure and fractional time derivative;Allen;Chin. Ann. Math. Ser. B,2017
3. Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues;Bellomo;Math. Models Methods Appl. Sci.,2015
4. Finite-time blow-up in a degenerate chemotaxis system with flux limitation;Bellomo;Trans. Amer. Math. Soc., Ser. B,2017
5. Maximum principles, extension problem and inversion for nonlocal one-sided equations;Bernardis;J. Differential Equations,2016
Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Local and global solutions for a subdiffusive parabolic–parabolic Keller–Segel system;Zeitschrift für angewandte Mathematik und Physik;2024-08-26
2. Well-posedness of Keller–Segel–Navier–Stokes equations with fractional diffusion in Besov spaces;Zeitschrift für angewandte Mathematik und Physik;2024-06-09
3. Initial Value and Terminal Value Problems for Distributed Order Fractional Diffusion Equations;Qualitative Theory of Dynamical Systems;2024-06-03
4. Well‐posedness and time decay of fractional Keller–Segel–Navier‐Stokes equations in homogeneous Besov spaces;Mathematische Nachrichten;2024-05-16
5. Existence and asymptotic stability of mild solution to fractional Keller‐Segel‐Navier‐Stokes system;Mathematical Methods in the Applied Sciences;2024-04-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3