Moment dynamics of oligomer formation in protein amyloid aggregation with secondary nucleation

Author:

Ding Yamin,Cai Liming,Kang Yanmei

Abstract

AbstractThe abnormal aggregation of proteins into amyloid fibrils, usually implemented by a series of biochemical reactions, is associated with various neurodegenerative disorders. Considering the intrinsic stochasticity in the involving biochemical reactions, a general chemical master equation model for describing the process from oligomer production to fibril formation is established, and then the lower-order statistical moments of different molecule species are captured by the derivative matching closed system, and the long-time accuracy is verified using the Gillespie algorithm. It is revealed that the aggregation of monomers into oligomers is highly dependent on the initial number of misfolded monomers; the formation of oligomers can be effectively inhibited by reducing the misfolding rate, the primary nucleation rate, elongation rate, and secondary nucleation rate; as the conversion rate decreases, the number of oligomers increases over a long time scale. In particular, sensitivity analysis shows that the quantities of oligomers are more sensitive to monomer production and protein misfolding; the secondary nucleation is more important than the primary nucleation in oligomer formation. These findings are helpful for understanding and predicting the dynamic mechanism of amyloid aggregation from the viewpoint of quantitative analysis.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3