Abstract
AbstractIn this work, we construct a Durrmeyer type modification of the τ-Baskakov operators depends on two parameters $\alpha >0$
α
>
0
and $\tau \in [0,1]$
τ
∈
[
0
,
1
]
. We derive the rate of approximation of these operators in a weighted space and also obtain a quantitative Voronovskaja type asymptotic formula as well as a Grüss Voronovskaya type approximation.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference40 articles.
1. Acar, T.: Asymptotic formulas for generalized Szász–Mirakyan operators. Appl. Math. Comput. 263, 233–239 (2015)
2. Acar, T., Mohiuddine, S.A., Mursaleen, M.: Approximation by $(p,q)$-Baskakov–Durrmeyer–Stancu operators. Complex Anal. Oper. Theory 12, 1453–1468 (2018)
3. Acu, A.M., Gupta, V.: Direct results for certain summation-integral type Baskakov–Szász operators. Results Math. 72, 1161–1180 (2017)
4. Acu, A.M., Hodiş, S., Raşa, I.: A survey on estimates for the differences of positive linear operators. Constr. Math. Anal. 1(2), 113–127 (2018)
5. Ansari, K.J., Mursaleen, M., Rahman, S.: Approximation by Jakimovski–Leviatan operators of Durrmeyer type involving multiple Appell polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(2), 1007–1024 (2019)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献