Abstract
AbstractWe use wavelets to define the Kantorovich variant of q-Baskakov type operators, and for $$1\le p< \infty$$
1
≤
p
<
∞
, we study the $$L_{p}$$
L
p
-approximation. Let $$\xi$$
ξ
be any positive constant and $$\Psi _{k}(x)$$
Ψ
k
(
x
)
be any continuous derivative function such that $$\int _{\mathbb {R}}x^{s}\Psi _{k}(x)\mathrm {d}_{q}x=0$$
∫
R
x
s
Ψ
k
(
x
)
d
q
x
=
0
where $$0\le s \le k,\;k\in \mathbb {N}$$
0
≤
s
≤
k
,
k
∈
N
, $$0<q<1$$
0
<
q
<
1
$$.$$
.
For all $$\Psi \in L_{\infty }(\mathbb {R})$$
Ψ
∈
L
∞
(
R
)
suppose the following conditions hold: (i) a finite positive $$\xi$$
ξ
exits with the property $$\sup \Psi \subset [0,\xi ],$$
sup
Ψ
⊂
[
0
,
ξ
]
,
(ii) its first k moments vanish: For $$1\le s \le k,\;k\in \mathbb {N}$$
1
≤
s
≤
k
,
k
∈
N
, we have $$\int _{\mathbb {R}}t^{s}\Psi (t)\mathrm {d}_{q}t=0$$
∫
R
t
s
Ψ
(
t
)
d
q
t
=
0
and $$\int _{\mathbb {R} }\Psi (t)\mathrm {d}_{q}t=1$$
∫
R
Ψ
(
t
)
d
q
t
=
1
. Then in the sense of Haar basis for $$0<q<1,$$
0
<
q
<
1
,
the $$q-$$
q
-
analogue of Baskakov–Kantorovich type wavelets operators are defined by $$\begin{aligned} \left( \mathcal {S}_{r,s,q}\;g\right) (x)=[r]_{q}\sum_{s =0}^{\infty }q^{s -1}B_{r,s,q}(x)\int _{\mathbb {R}}g\left( t\right) \Psi \left( q^{s-1}[r]_{q}t-[s ]_{q}\right) \mathrm {d}_{q}t. \end{aligned}$$
S
r
,
s
,
q
g
(
x
)
=
[
r
]
q
∑
s
=
0
∞
q
s
-
1
B
r
,
s
,
q
(
x
)
∫
R
g
t
Ψ
q
s
-
1
[
r
]
q
t
-
[
s
]
q
d
q
t
.
Funder
The University of Newcastle
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Mathematics,General Earth and Planetary Sciences,General Agricultural and Biological Sciences,General Chemistry
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献