Construction of q-Baskakov Operators by Wavelets and Approximation Properties

Author:

Nasiruzzaman Md.ORCID,Kilicman AdemORCID,Ayman-Mursaleen MohammadORCID

Abstract

AbstractWe use wavelets to define the Kantorovich variant of q-Baskakov type operators, and for $$1\le p< \infty$$ 1 p < , we study the $$L_{p}$$ L p -approximation. Let $$\xi$$ ξ be any positive constant and $$\Psi _{k}(x)$$ Ψ k ( x ) be any continuous derivative function such that $$\int _{\mathbb {R}}x^{s}\Psi _{k}(x)\mathrm {d}_{q}x=0$$ R x s Ψ k ( x ) d q x = 0 where $$0\le s \le k,\;k\in \mathbb {N}$$ 0 s k , k N , $$0<q<1$$ 0 < q < 1 $$.$$ . For all $$\Psi \in L_{\infty }(\mathbb {R})$$ Ψ L ( R ) suppose the following conditions hold: (i) a finite positive $$\xi$$ ξ exits with the property $$\sup \Psi \subset [0,\xi ],$$ sup Ψ [ 0 , ξ ] , (ii) its first k moments vanish: For $$1\le s \le k,\;k\in \mathbb {N}$$ 1 s k , k N , we have $$\int _{\mathbb {R}}t^{s}\Psi (t)\mathrm {d}_{q}t=0$$ R t s Ψ ( t ) d q t = 0 and $$\int _{\mathbb {R} }\Psi (t)\mathrm {d}_{q}t=1$$ R Ψ ( t ) d q t = 1 . Then in the sense of Haar basis for $$0<q<1,$$ 0 < q < 1 , the $$q-$$ q - analogue of Baskakov–Kantorovich type wavelets operators are defined by $$\begin{aligned} \left( \mathcal {S}_{r,s,q}\;g\right) (x)=[r]_{q}\sum_{s =0}^{\infty }q^{s -1}B_{r,s,q}(x)\int _{\mathbb {R}}g\left( t\right) \Psi \left( q^{s-1}[r]_{q}t-[s ]_{q}\right) \mathrm {d}_{q}t. \end{aligned}$$ S r , s , q g ( x ) = [ r ] q s = 0 q s - 1 B r , s , q ( x ) R g t Ψ q s - 1 [ r ] q t - [ s ] q d q t .

Funder

The University of Newcastle

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Mathematics,General Earth and Planetary Sciences,General Agricultural and Biological Sciences,General Chemistry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3