A time-splitting local meshfree approach for time-fractional anisotropic diffusion equation: application in image denoising

Author:

Mazloum Jalil,Hadian Siahkal-Mahalle Behrang

Abstract

AbstractImage denoising approaches based on partial differential modeling have attracted a lot of attention in image processing due to their high performance. The nonlinear anisotropic diffusion equations, specially Perona–Malik model, are powerful tools that improve the quality of the image by removing noise while preserving details and edges. In this paper, we propose a powerful and accurate local meshless algorithm to solve the time-fractional Perona–Malik model which has an adjustable fractional derivative making the control of the diffusion process more convenient than the classical one. In order to overcome the complexities of the problem, a suitable combination of the compactly supported radial basis function method and operator splitting technique is proposed to convert a complex time-fractional partial differential equation into sparse linear algebraic systems that standard solvers can solve. The numerical results of classical and fractional models are explored in different metrics to demonstrate the proposed scheme’s effectiveness. The numerical experiments confirm that the method is suitable to denoise digital images and show that the fractional derivative increases the model’s ability to remove noise in images.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Algebra and Number Theory,Analysis

Reference57 articles.

1. Lotfi, Y., Parand, K.: Anti-aliasing of gray-scale/color/outline images: looking through the lens of numerical approaches for PDE-based models. Comput. Math. Appl. 113(1), 130–147 (2020)

2. Singh, A., Agarwal, P., Chand, M.: Image encryption and analysis using dynamic AES. In: 2019 5th International Conference on Optimization and Applications (ICOA) (2019)

3. Sidi ammi, M.R., Jamiai, I.: Finite difference and Legendre spectral method for a time-fractional diffusion–convection equation for image restoration. Discrete Contin. Dyn. Syst., Ser. A 11(1), 103–117 (2020)

4. Gu, Y.: Finite element numerical approximation for two image denoising models. Circuits Syst. Signal Process. 39, 2042–2062 (2020)

5. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D: Nonlinear Phenom. 60(1–4), 259–268 (1992)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3