A New Fractional-order Derivative-based Nonlinear Anisotropic Diffusion Model for Biomedical Imaging

Author:

CHAUHAN Alka1ORCID,KUMAR Santosh2ORCID,KARACA Yeliz3ORCID

Affiliation:

1. Sharda University

2. Sharda University Greater Noida

3. University of Massachusetts Chan Medical School (UMASS), Worcester, MA 01655, USA

Abstract

Medical imaging, the process of visual representation of different organs and tissues of the human body, is employed for monitoring the normal as well as abnormal anatomy and physiology of the body. Imaging which can provide healthcare solutions ensuring a regular measurement of various complex diseases plays a critical role in the diagnosis and management of many complex diseases and medical conditions, and the quality of a medical image, which is not a single factor but a composite of contrast, artifacts, distortion, noise, blur, and so forth, depends on several factors such as the characteristics of the equipment, the imaging method in question as well as the imaging variables chosen by the operator. The medical images (ultrasound image, X-rays, CT scans, MRIs, etc.) may lose significant features and become degraded due to the emergence of noise as a result of which the process of improvement pertaining to medical images has become a thought-provoking area of inquiry with challenges related to detecting the speckle noise in the images and finding the applicable solution in a timely manner. The partial differential equations (PDEs), in this sense, can be used extensively in different aspects with regard to image processing ranging from filtering to restoration, segmentation to edge enhancement and detection, denoising in particular, among the other ones. In this research paper, we present a conformable fractional derivative-based anisotropic diffusion model for removing speckle noise in ultrasound images. The proposed model providing to be efficient in reducing noise by preserving the essential image features like edges, corners and other sharp structures for ultrasound images in comparison to the classical anisotropic diffusion model. Furthermore, we aim at proving the viscosity solution of the fractional diffusion model. The finite difference method is used to discretize the fractional diffusion model and classical diffusion models. The peak signal-to-noise ratio (PSNR) is used for the quality of the smooth images. The comparative experimental results corroborate that the proposed, developed and extended mathematical model is capable of denoising and preserving the significant features in ultrasound towards better accuracy, precision and examination within the framework of biomedical imaging and other related medical, clinical, and image-signal related applied as well as computational processes.

Publisher

Akif Akgul

Subject

Mechanical Engineering,Electrical and Electronic Engineering,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3