Abstract
AbstractThe notion of m-polynomial convex interval-valued function $\Psi =[\psi ^{-}, \psi ^{+}]$
Ψ
=
[
ψ
−
,
ψ
+
]
is hereby proposed. We point out a relationship that exists between Ψ and its component real-valued functions $\psi ^{-}$
ψ
−
and $\psi ^{+}$
ψ
+
. For this class of functions, we establish loads of new set inclusions of the Hermite–Hadamard type involving the ρ-Riemann–Liouville fractional integral operators. In particular, we prove, among other things, that if a set-valued function Ψ defined on a convex set S is m-polynomial convex, $\rho,\epsilon >0$
ρ
,
ϵ
>
0
and $\zeta,\eta \in {\mathbf{S}}$
ζ
,
η
∈
S
, then $$\begin{aligned} \frac{m}{m+2^{-m}-1}\Psi \biggl(\frac{\zeta +\eta }{2} \biggr)& \supseteq \frac{\Gamma _{\rho }(\epsilon +\rho )}{(\eta -\zeta )^{\frac{\epsilon }{\rho }}} \bigl[{_{\rho }{\mathcal{J}}}_{\zeta ^{+}}^{\epsilon } \Psi (\eta )+_{ \rho }{\mathcal{J}}_{\eta ^{-}}^{\epsilon }\Psi (\zeta ) \bigr] \\ & \supseteq \frac{\Psi (\zeta )+\Psi (\eta )}{m}\sum_{p=1}^{m}S_{p}( \epsilon;\rho ), \end{aligned}$$
m
m
+
2
−
m
−
1
Ψ
(
ζ
+
η
2
)
⊇
Γ
ρ
(
ϵ
+
ρ
)
(
η
−
ζ
)
ϵ
ρ
[
ρ
J
ζ
+
ϵ
Ψ
(
η
)
+
ρ
J
η
−
ϵ
Ψ
(
ζ
)
]
⊇
Ψ
(
ζ
)
+
Ψ
(
η
)
m
∑
p
=
1
m
S
p
(
ϵ
;
ρ
)
,
where Ψ is Lebesgue integrable on $[\zeta,\eta ]$
[
ζ
,
η
]
, $S_{p}(\epsilon;\rho )=2-\frac{\epsilon }{\epsilon +\rho p}- \frac{\epsilon }{\rho }\mathcal{B} (\frac{\epsilon }{\rho }, p+1 )$
S
p
(
ϵ
;
ρ
)
=
2
−
ϵ
ϵ
+
ρ
p
−
ϵ
ρ
B
(
ϵ
ρ
,
p
+
1
)
and $\mathcal{B}$
B
is the beta function. We extend, generalize, and complement existing results in the literature. By taking $m\geq 2$
m
≥
2
, we derive loads of new and interesting inclusions. We hope that the idea and results obtained herein will be a catalyst towards further investigation.
Funder
Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference41 articles.
1. Adil Khan, M., Ali, T., Khan, T.U.: Hermite–Hadamard type inequalities with applications. Fasc. Math. 59, 57–74 (2017)
2. Adil Khan, M., Iqbal, A., Suleman, M., Chu, Y.-M.: Hermite–Hadamard type inequalities for fractional integrals via Green function. J. Inequal. Appl. 2018, Article ID 161 (2018)
3. Adil Khan, M., Khurshid, Y., Ali, T.: Hermite–Hadamard inequality for fractional integrals via η-convex functions. Acta Math. Univ. Comen. 86(1), 153–164 (2017)
4. Adil Khan, M., Khurshid, Y., Du, T., Chu, Y.-M.: Generalization of Hermite–Hadamard type inequalities via conformable fractional integrals. J. Funct. Spaces 2018, Article ID 5357463 (2018)
5. Adil Khan, M., Mohammad, N., Nwaeze, E.R., Chu, Y.-M.: Quantum Hermite–Hadamard inequality by means of a Green function. Adv. Differ. Equ. 2020, 99 (2020)