Predator–prey pattern formation driven by population diffusion based on Moore neighborhood structure

Author:

Huang Tousheng,Zhang Huayong,Hu Zhengran,Pan Ge,Ma Shengnan,Zhang Xiumin,Gao Zichun

Abstract

Abstract Diffusion-driven instability is a basic nonlinear mechanism for pattern formation. Therefore, the way of population diffusion may play a determinative role in the spatiotemporal dynamics of biological systems. In this research, we launch an investigation on the pattern formation of a discrete predator–prey system where the population diffusion is based on the Moore neighborhood structure instead of the von Neumann neighborhood structure widely applied previously. Under pattern formation conditions which are determined by Turing instability analysis, numerical simulations are performed to reveal the spatiotemporal complexity of the system. A pure Turing instability can induce the self-organization of many basic types of patterns as described in the literature, as well as new spiral-spot and labyrinth patterns which show the temporally oscillating and chaotic property. Neimark–Sacker–Turing and flip–Turing instability can lead to the formation of circle, spiral and much more complex patterns, which are self-organized via spatial symmetry breaking on the states that are homogeneous in space and non-periodic in time. Especially, the emergence of spiral pattern suggests that spatial order can generate from temporal disorder, implying that even when the predator–prey dynamics in one site is chaotic, the spatially global dynamics may still be predictable. The results obtained in this research suggest that when the way of population diffusion changes, the pattern formation in the predator–prey systems demonstrates great differences. This may provide realistic significance to explain more general predator–prey coexistence.

Funder

the National Natural Science Foundation of China

the National Water Pollution Control and Treatment Science and Technology Major Project

the Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Algebra and Number Theory,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3